Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways.
نویسندگان
چکیده
The NO/cGMP signaling pathway plays a major role in the cardiovascular system, in which it is involved in the regulation of smooth muscle tone and inhibition of platelet aggregation. Under pathophysiological conditions such as endothelial dysfunction, coronary artery disease, and airway hyperreactivity, smooth muscle containing arteries and bronchi are of great pharmacological interest. In these tissues, NO mediates its effects by stimulating guanylyl cyclase (GC) to form cGMP; the subsequent increase in cGMP is counteracted by the cGMP-specific phosphodiesterase (PDE5), which hydrolyzes cGMP. In platelets, allosteric activation of PDE5 by cGMP paralleled by phosphorylation has been shown to govern the sensitivity of NO/cGMP signaling. Here, we demonstrate that the functional responsiveness to NO correlates with the relative abundance of GC and PDE5 in aortic and bronchial tissue, respectively. We show a sustained desensitization of the NO-induced relaxation of aortic and bronchial rings caused by a short-term exposure to NO. The NO treatment caused heterologous desensitization of atrial natriuretic peptide-induced relaxation, whereas relaxation by the cGMP analog 8-pCPT-cGMP was unperturbed. Impaired relaxation was shown to be paralleled by PDE5 phosphorylation; this indicates enhanced cGMP degradation as a mechanism of desensitization. In summary, our results demonstrate the physiological impact of PDE5 activation on the control of smooth muscle tone and provide an explanation for the apparent impairment of NO-induced vasorelaxation.
منابع مشابه
Mathematical modeling of the nitric oxide/cGMP pathway in the vascular smooth muscle cell.
The nitric oxide (NO)/cGMP pathway in the vascular smooth muscle cell (VSMC) is an important cellular signaling system for the regulation of VSMC relaxation. We present a mathematical model to investigate the underlying mechanisms of this pathway. The model describes the flow of NO-driven signal transduction: NO activation of soluble guanylate cyclase (sGC), sGC- and phosphodiesterase-catalyzed...
متن کاملIRAG and novel PKG targeting in the cardiovascular system.
Signaling by nitric oxide (NO) determines several cardiovascular functions including blood pressure regulation, cardiac and smooth muscle hypertrophy, and platelet function. NO stimulates the synthesis of cGMP by soluble guanylyl cyclases and thereby activates cGMP-dependent protein kinases (PKGs), mediating most of the cGMP functions. Hence, an elucidation of the PKG signaling cascade is essen...
متن کاملChronic nicotine alters NO signaling of Ca(2+) channels in cerebral arterioles.
Smoking is a major health hazard with proven deleterious effects on the cerebral circulation, including a decrease in cerebral blood flow and a high risk for stroke. To elucidate cellular mechanisms for the vasoconstrictive and pathological effects of nicotine, we used a nystatin-perforated patch-clamp technique to study Ca(2+) channels and Ca(2+)-activated K(+) (BK) channels in smooth muscle c...
متن کاملChronic Nicotine Alters NO Signaling of Ca Channels in Cerebral Arterioles
Smoking is a major health hazard with proven deleterious effects on the cerebral circulation, including a decrease in cerebral blood flow and a high risk for stroke. To elucidate cellular mechanisms for the vasoconstrictive and pathological effects of nicotine, we used a nystatin-perforated patch-clamp technique to study Ca channels and Ca-activated K (BK) channels in smooth muscle cells isolat...
متن کاملCell Biology/Signaling Inhibition of Nitric Oxide–Stimulated Vasorelaxation by Carbon Monoxide-Releasing Molecules
Objective—Carbon monoxide (CO) is a weak soluble guanylyl cyclase stimulator, leading to transient increases in cGMP and vasodilation. The aim of the present work was to measure the effect of CO-releasing molecules (CORMs) on the cGMP/nitric oxide (NO) pathway and to evaluate how selected CORMs affect NO-induced vasorelaxation. Methods and Results—Incubation of smooth muscle cells with some but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 69 6 شماره
صفحات -
تاریخ انتشار 2006